
EE432 Advanced Digital Design
with HDL

Term Project
Spring 2013

Instructor — Tom Almy

I (the instructor) am always looking for ways to make the courses interesting,
exciting, and educational. I've found that projects are a great way to learn a subject.
This year we will have a team project to implement the PDP-8 Minicomputer. Don't
worry, the PDP-8 is no match in performance to an Intel i7, but it represented low
cost ($18,000) computing power in the 1960's. We are going to build a subset of a
full PDP-8 system.

I have had experience building a computer in an academic setting, in 1972. When I
was in college I took a course where 10 students designed and built a computer out
of many hundreds of integrated circuits over the course of 10 weeks. Each student
was assigned a component of the system and had to work out with other students
how the components would interface together. The components were assembled
on breadboards in suitcases, which were brought together near the end of the term
to get working together. A program was written by one student that calculated
prime numbers. It was a 16 bit computer which, because of its very slow design,
took 24 hours to find all the prime numbers less than 65535.

We have both advantages and disadvantages compared to that class. The major
advantages are:
• The architecture is defined
• We can simulate operation to uncover errors early in the design process.
• 40 years of technical advances mean we can design and “wire” the system in a

program, rather than mounting and wiring hundreds of parts.
• You get four credits for this (although there will be some other assignments) and I

only got 3.

EE432 Advanced Digital Design with HDL Term Project, Spring 2013 Page 1 of 9

One potential problem that we are going to handle from the beginning is a student's
failure to complete their assigned component. Luckily, this didn't happen in 1972,
when if any student didn't get their component working the whole project would
have failed. To avoid that problem, all components will have two people assigned
who will work independently. Their components should share the same interfaces
so that they can be interchanged. We will call these teams “A” and “B”. We should
end up with two PDP-8 systems, one consisting of team “A” components and the
other consisting of team “B” components. Note that there is expected to be no
correlation between team names and final grades.

Some terms we will use:
• Designer - a student in EE 432
• Design - A PDP-8 computer "clone".
• Component - a part of the design done by a single, or sometimes a pair, of

designers.
• Team - All of the designers working on a single design. We will call these teams

“A”, “B”, and in the case of large enrollment “C”.

If a student, say a team “A” designer, drops the course or otherwise fails to complete
their component in a timely manner, the team of “A” designers can use a
component from another team, a “B” component. The team could also decide to
redivide the work load.

A tentative set of interfaces for each component will be provided. If a designer feels
they need to change the interface, they must consult will all other designers in all
teams that use that interface to reach consensus. In addition, it will be necessary for
the team to combine components for testing, which will necessitate collaboration
during the design process.

So lets have a quick look at the project.

The Project
A number of documents are on the distribution DVD which pertain to the PDP-8
design.

• PDP-8 - Wikipedia.pdf The PDP-8 page on Wikipedia as of July 11, 2008. Because
Wikipedia is a moving target, I’ve extracted the page here so we all see the same
thing. This is a good overview of a PDP-8

• PDP-8 Memory Reference Instructions.pdf The description of the operation of
the memory reference instructions.

• PDP-8 Microcoded Instructions.pdf The description of the remaining
instructions, except for the Extended Arithmetic Unit, which does multiplies,
divides, and extended shifts.

EE432 Advanced Digital Design with HDL Term Project, Spring 2013 Page 2 of 9

• PDP-8 Console Teletype Instructions.pdf Documentation of the IOT instructions
for operating the teletype.

• InstructionSet.txt Another explanation of the PDP-8 instruction set.
• 68HCS12Text_Partial.pdf Chapters in my microcontroller textbook on binary

arithmetic and how a microcontroller executes instructions (hint— the PDP8
works basically the same way!) If you know nothing about computer architecture,
read this early on.

• UART_Design.pdf Instructions on creating a UART, which was done by all DIgital
Systems students for a couple of years before the PDP-8 assignment. The UART
Designer may find this useful.

• Implementation_Details.pdf — Suggested interfaces between modules and some
additional hints and suggestions for the various designers. Start here in your
implementation.

• Multiply_and_Divide.txt — The EAE multiply and divide instructions.
• InstructionSet.txt — Another view of the instruction set
• Small_Computer_Handbook — basically a PDP-8 users manual, dating from,

coincidentally, 1972. It can get dense at times, but it is the definitive reference.
Only sections useful to this project have been included. The only documentation
for the Extended Arithmetic Unit is
here.

• PDP-8 Memory.JPG and PDP-8
Block Diagram.JPG Included for
reference, we won’t architect
our PDP-8 like this! Besides, we
don’t have any magnetic core
memory.

• Adept IO Expansion rd.pdf to
supply our front panel controls.

• Programming Tools — The student
who does the software task will be
particularly interested in the
contents of this folder. It contains
the assembler program, a
simulator, the binary tape loader
programs, and two example,
functional programs that calculate
prime numbers. The student will
have to rewrite at both of these in
PDP-8 assembler. One of them uses the Extended Arithmetic Unit. The other
calculates primes and displays there values without doing any multiplies or divides,
but is a more complicated algorithm.

Our PDP-8 will have 4096 12-bit words, which simplifies its design. When
documentation refers to changes in the PDP-8 design, we will assume we are
implementing a design prior to the PDP-8/E (such as a PDP-8/I). However our

EE432 Advanced Digital Design with HDL Term Project, Spring 2013 Page 3 of 9

EE432 PDP-8

CPU

State_Machine

IO_Bus

Front_Panel

UART

4k RAM

4k ROM

Memory_Bus

Transfer at
Initialization

design will not have interrupt support or Direct Memory Access (which Digital
Equipment Corporation called “Data Break”). We will simulate most of a front panel
using the Adept I/O Expansion facility. All computers used to have front panels to
operate them manually. No computers do anymore. We need the front panel to
observe operation during debugging. Now days these tasks, and more, are
performed by the operating system.

The Goal
The team will be successful if they can do the following with their design:
1. With the PDP-8 design loaded into a Nexys 3 board, and the Nexys 3 board

connected to a PC via the RS232 (COM) port, start the RIM loader program
initially in the PDP-8 memory via the front panel.

2. Send the PDP-8 prime number program in RIM format from the PC's terminal
program to the PDP-8.

3. When the program has been transferred, start the program running from the
front panel of the PDP-8.

4. All prime number less than 4095 are calculated and printed on the PC terminal
program display.

ASM12 (from the Microcontroller class) or other program can be used as the
terminal program.

The Components
The first evening of the class students will pick the component they wish to work on
and the team. A table showing each students component assignment will be on the
forum site, http://oitclass.com/forums. The forum can be used for communication
among team members, although individual teams may set up other methods if they
wish. Students may decide to swap their components (or teams). Swapping may
occur at any time up to the end of the second class session.

All designers are expected to finish their component designs and have VHDL that
compiles without error but otherwise untested by week 6 (unless otherwise
specified). Why so early? Because debugging is a major time consumer. All
components should be tested individually and in small combinations (such as CPU
and state machine) by week 8. This will give two weeks to combine all the
components, wring out the remaining bugs, and demonstrate operation with the
prime number program.

The sole reason teams in past years haven't completed the project on time has been
procrastination. For this reason, the week 6 items must be turned by the week 6
class meeting, and week 8 items must be turned in by the week 8 class meeting.
Please submit any pertinent VHDL module files, test benches, Design summaries
(they are HTML files in the project folder), and screenshots of simulations in a ZIP
archive. There is no partial credit for these items.

EE432 Advanced Digital Design with HDL Term Project, Spring 2013 Page 4 of 9

Designers for the CPU and state machine need to be able to work together outside
of class time as necessary since their components interact strongly with each other.
All designers must work together in the final design debugging to ensure project
success!

There is one unique component assignment. It requires no hardware design for the
project, but still has deadlines for weeks 6 and 8. In return, for the right student this
is probably the easiest task, and if successful will result in an A grade for the project.

1 Software Component

A student requesting the software component must either have some assembler
programming experience (such as having successfully taken the Microcontroller
sequence) or a strong desire to self-teach. Note that this student will still have to
complete the VHDL homework assignments, so there is no getting out of digital
system design. This position is so critical that if the student successfully completes
all tasks an A grade for the project is assured even if the the final design doesn't
function correctly.

The Software Component Designer has the following tasks:

1. Write a C program which converts PDP-8 assembler output into a block memory
initialization file (“.coe”). This will allow running PDP-8 code without having to
load from the front panel or “Teletype”.

2. Using the C program, preload the RIM loader so that it doesn’t need to be loaded
from the front panel. The RIM loader will be used to load programs from "paper
tape", in our case the download function of a terminal program.

3. In the course of learning the PDP-8 instruction set, write some small programs
that exercise all of the instructions and all of the memory addressing modes.
Verify operation in the simulator. The CPU and State Machine designers will need
these programs for testing. Contact the designers so that at least one program is
available when they are ready to start debugging their designs. Items 1-3 are due
at week 6.

4. Convert one or both of the prime number programs to PDP-8 assembler. Test
the programs using the PDP-8 simulator. There must be a working program by
the time it is needed in week 8. Supplying both programs increases the chances
that the team will be able to get at least one working program on the hardware.

In order to be successful, the Software Component Designer must successfully pass
the programs to the teams so that they can be used.

2 CPU Component

The CPU component consists of the registers, arithmetic and logic functions, and
data paths of the processor. The architecture has been defined. The CPU
component is to include the components necessary to implement the extended

EE432 Advanced Digital Design with HDL Term Project, Spring 2013 Page 5 of 9

arithmetic unit functionality. Each team will have a designer for the CPU
component. The tasks are:

1. Write VHDL for the component. This must successfully compile by week 6.
2. Write a test bench that executes all the data paths by week 6. The test bench

must successfully execute by week 8.
3. Must collaborate with the State Machine Designer for the team in writing a test

bench which has the CPU, state machine, and a behavioral model for the
memory. The test bench will be used by the State Machine Designer.

4. Must collaborate with front panel designer as to the interface design between
the CPU and front panel.

5. Must collaborate with the EAE component designer in providing the necessary
CPU features for the EAE component.

6. Must change the CPU if necessary to meet any unforeseen needs of the State
Machine and Extended Arithmetic Unit Designers.

3 State Machine (CPU controller) Component

The state machine component consists of a state machine which controls the CPU.
The Designer may wish to divide the state machine into two or more state machines
to accomplish the tasks. Each team will have a State Machine designer. The
interface to the CPU is defined, but might need to be changed to complete the
tasks. The tasks are:

1. Must implement the entire instruction set — the memory and microcoded
instructions.

2. Must write a test bench to check the basic operation of the state machine by
week 6.

3. Must collaborate with the CPU designer for the team in writing a test bench
which has the CPU, state machine, and a behavioral model for the memory. This
is due by week 8.

4. Must use the test bench of task 3, in combination with tools and test programs
provided by the Software Designer, to test for successful operation of each
instruction. Should work with CPU designer in correcting any errors in the CPU,
but it is the CPU Designer’s responsibility to maintain the CPU VHDL code.

5. Must collaborate with front panel designer for run/stop control of CPU.
6. Must collaborate with the EAE component designer, as necessary.

4 EAE Component

The Extended Arithmetic Element Unit exists as added registers in the CPU and a
state machine, perhaps an additional state machine, to implement the instructions.

The designer of the EAE has perhaps the most challenging task. The designer must
make sure the CPU component is sufficiently robust to support the EAE operations.
The designer must also implement a state machine, or contribute to the CPU

EE432 Advanced Digital Design with HDL Term Project, Spring 2013 Page 6 of 9

controller state machine effort to implement the instructions. As a perhaps worst
case, the EAE designer may want a separate module with the additional registers
and control circuits, and working with the CPU components designers define an
interface between their respective components. The goal (the EAE instructions) are
well defined, but the approach to achieving the goal is completely up to the EAE
component designer.

Note that only the instructions that multiply, divide, and access the EAE registers (to
allow use of the multiply and divide instructions) need be implemented. Specifically
these are the CLA, MQA, MQL, SWP (MQA and MQL combined), MUL, and DVI
instructions. Only mode A is supported.

The EAE component designer has no specific deliverables, but relies on the
submissions of the CPU and state machine designers. (This can be viewed as a
blessing or a curse.)

If there are six persons on a team, the EAE component design tasks will be done by
the two CPU designers.

5 UART Component

The UART (Universal Asynchronous Receiver/Transmitter) is the “serial port” that
provides a user interface as well as a way to load programs from a connected
personal computer. Each team will have a UART designer. The interface to the UART
is defined, but might need to be changed to complete the tasks. The tasks are:

1. The interface is to operate at 9600 bits/second, with 8 data bits and no parity.
2. Must write a test bench to check the basic operation of the state machine by

week 6. The test bench needs to model the IO bus interface to the CPU as well
as the serial port connection.

3. Must realize the serial port in the FPGA, with a state machine to “loop back”
characters from the receiver to transmitter using a state machine to manipulate
the control signals which would come from the CPU module. The
implementation is to be tested by connecting to a PC to verify operation. This is
due by week 8.

4. Must assist as necessary with integration and testing with the project as a whole.
It is the UART designer’s responsibility to maintain the UART VHDL code.

6 Front Panel Component

The front panel provides the only physical interface to the computer. At one time all
computers had a front panel which was used for loading programs by hand, and for
debugging. We can be a bit more advanced since we can load programs initially in
the ISE by providing an initial value to the RAM contents. We are also limited in the
number of switches and lights provided on the Nexys 3 board so we will use a virtual
front panel provided by the Adept IO Expansion module.

EE432 Advanced Digital Design with HDL Term Project, Spring 2013 Page 7 of 9

 I propose the following, which can be modified by the designers if they see a better
approach:

• 7-segment LED display shows the content of a selected register as an octal value.
One of the pushbuttons cycles through the registers.

• Accumulator with link bit displayed as decimal point
• MQ register
• Program counter
• Memory contents at the address set in the switch register

• 4 LEDs indicated the register selected on the 7 segment LED display.
• 1 LED to indicate the CPU is running.
• 12 Virtual slide switches for data input.
• One virtual switch for run/stop
• One virtual button to execute a single instruction
• One virtual button to store the data switch register value into the program counter

to set the starting address, called “Deposit”.
• One virtual button to store the data switch register value at the location specified

by the Program Counter, and then increment the Program Counter.

The tasks are:
1. Must design front panel interface.
2. Must collaborate with CPU and state machine designers as appropriate.
3. Must have front panel interface with “dummied” CPU and state machine

interfaces running by week 6. This is actually the earliest due date for designs
running in the Nexys board.

EE432 Advanced Digital Design with HDL Term Project, Spring 2013 Page 8 of 9

Data Switch InputData Switch Input
Run/StopRun/Stop

Load PCLoad PC
Display SelDisplay Sel

DepositDepositSingle StepSingle Step

4. Must be ready for testing with other components by week 8, will all interface
details worked out.

7 Memory System Designer and Top Level Integrator

The memory system component consists of the external RAM memory, which is to
be used by the PDP-8 as it’s 4k x 12 RAM, and an internal Block Memory configured
as ROM. When the PDP-8 is initialized, the contents of the Block Memory is to be
transferred to the external RAM memory.

As the Top Level Integrator, the tasks are mainly managerial: keep in contact with all
designers to make sure all interfaces (ports) are consistent, merge all component
VHDL files into a single Xilinx Project, and turn in the all the design files at the end of
the term.

The tasks are:
1. Successfully read and write to the external RAM by week 6. The designer will

need to devise logic in the FPGA to test the operation or perform a timing
simulation of the RAM in a test bench. Running on the hardware is preferred.

2. Must collaborate with the CPU and state machine designers on an interface.
Handshaking may be needed between the components, if not between the
designers.

3. Complete the initialization from Block Memory and the interface to the CPU/
State Machine by week 8.

4. Assist as necessary with the final integration.

One Extra Component

An additional component, which implements the IO "bus" posed a problem. Was it
part of the CPU, the UART, or the Top Level? I solved the problem by providing it
myself. It's the module IOT_Distributor.vhd.

EE432 Advanced Digital Design with HDL Term Project, Spring 2013 Page 9 of 9

