
EE333 Microcontroller Engineering
Oregon Tech Portland, Fall 2013
Lab Assignment #3 - Eliminating Display Jitter

Due November 7

Objectives: 

The student will learn how to use low-pass filtering to stabilize a display.

Equipment Required: 

Everything from lab assignment 2, including your program.

Background Information:

The program from assignment 2 would have a jittering display, showing two 
temperature values in what appeared to be simultaneously, whenever the 
temperature was right on the boundary between two values. In addition, the 
illumination level LEDs are difficult to read because of the jitter. In an ideal world, 
this would not occur, however noise in the electronics, and slightly varying 
temperatures/illumination cause the measurements to be constantly changing. 

The way to smooth any changes is to implement a low pass filter. We could do this 
electronically (with an RC filter, for instance) however we don’t really have a way to 
modify the Dragon12. I don’t recommend performing board modifications with an 
Xacto knife.

One simple technique is to reduce the measuring rate. Measurements are currently 
taken (by your code) every 1.024 milliseconds. That’s even faster than they can be 
displayed or the display can be seen with the eyes. You could modify the code so 
that measurements are made at a much slower rate. That way the display could only 
change once a second and would be easier to read.

Another approach is to average a number of readings to cancel the noise. You could 
keep track of, say, the last 100 readings, sum them, an divide by 100. But this would 
be a time consuming task, as well as use up a lot of RAM to hold all of those values. 
There is a better way that will give an almost identical result which averages all 
measurement but older ones with ever decreasing significance. 

Let’s say that the illumination just measured is L, and we have another variable that 
holds the sum of 256 measurements called S. This also represents the average of the 
measurements if we divide it by 256.  Each time we take a new measurement we 

store a new value of S calculated as 
255S
256

+ L . Each new L becomes 1/256th the 

value of the new S. Since we are making 976 measurements a second, the value of S 
will quickly reach the limit where it is 256 times the average luminance. How 
quickly? Well the “filter” has a time constant of 256 samples, the reading will be 

Page 1 of 3



within 1 count in about 1.25 seconds. That should be fast enough. Now the 
displayed value is calculated from S/256 and the jitter is reduced.

Assignment:

In this assignment you will modify your Lab 2 assignment so that it has a stable 
display by using averaging and the reduced display rate. I suggest doing this in three 
steps, verifying operation after each step.

Assignment Step 1:

The first step is to do averaging for the luminance. There is a reason to use the value 
256 in the explanation, above. If we have a word variable, the upper byte represents 
the value divided by 256, so we get a “free” division operation. 

I added a word variable named lumavg to hold the sum or averaged value. In the 
main program loop, where you read from ADR04H, change the code so that instead 
the most significant byte of lumavg is copied into lumavg.

In the later section (which executes every 1.024 milliseconds) you will read the value 
in ADR04H and divide by 4, just as in lab 2. Then use it to calculate the new lumavg 

value. The code to calculate lumavg is a bit obscure. It relies on 
255S
256

+ L being the 

same as L + S − S
256

. The code to do this is compact but a bit obscure, so I’ll show it 

here:

  ; start out with the luminance value in D
        addd    lumavg    ; add lumavg 
        subb    lumavg    ; subtract lumavg/256
        sbca    #0        ; handle borrow from upper byte
        std     lumavg    ; store result.

Verify operation at this point before proceeding. Note how the displayed value is 
more stable, but still is a bit difficult to read.

Assignment Step 2:

Repeat what you did in Step 1, but for the temperature measurement. The sum 
should be 256 times the temperature in degrees Celsius.

Assignment Step 3:

Modify the program from Step 2 so that the displays update roughly four times a 
second instead of what appears to be continuously. This should really improve the 
ability to read the luminance and less obviously the temperature.

To do this, make use of the section of code that executes once every 1.024 
milliseconds. Add a byte variable that is incremented here. Whenever the value 
becomes zero (which will happen every 256 interrupts, roughly four times a second) 
set a second byte variable (a “flag” variable) to be non-zero. This means that the flag 
variable will be set roughly four times a second.

Page 2 of 3



Now in the main program loop (where you write to the display variables) add a test 
to see if the flag variable is non-zero. If it is non-zero, clear the variable (make it 
zero) and then write to the display. If it is zero, branch around the code that writes 
to the display. This way the display will be updated only four times a second.

Run the program and verify operation. Much better, isn’t it?

To turn in:

• Documented program listing. 

• Description of how you tested the program.

• Discussion of any problems you had

This should all be placed in a single file (PDF format preferred, Word or Open Office 
formats also acceptable).

Page 3 of 3


